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Abstract

The thermomechanical states in a class of functionally graded cylinders under extension, torsion, shearing, pres-
suring, and temperature changes are studied. Referred to the cylindrical coordinates, the material is cylindrically an-
isotropic. The only material symmetry is reflectional symmetry with respect to the cylindrical surfaces » = constant. The
material properties are considered to be radial dependent such that the conductivity coefficients, the thermal coefficients
as well as the elastic constants depend in a specific manner on r. Exact solutions for the temperature distribution,
thermoelastic deformations and stress fields are determined for inhomogeneous hollow and solid cylinders, with power
law dependence of the moduli, subjected to an axial force and a torque at the ends and the surface loads that may vary
circumferentially but not axially. In addition, exact solutions for thermoelastic responses of rotating cylinders are
obtained within the context. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGM) are composite materials intentionally designed so that they
possess desirable properties for specific applications, especially for performance under thermal environ-
ment. On the macroscopic scale, FGMs are inhomogeneous with spatially varying material properties.
Because of the combined effects of anisotropy and inhomogeneity, it is extremely difficult to obtain exact
solutions for thermoelastic problems of FGM with anisotropic properties. Previous studies on the subject
considered FG isotropic materials including those, for example, by Tanigawa (1995), Main and Spencer
(1998), Horgan and Chan (1998, 1999), Zimmerman and Lutz (1999), Yang (2000), and Rooney and
Ferrari (2001), where additional references can be found. Few work has been done for FG anisotropic
materials. In studying the microstructural optimization of a FG layer, Nadeau and Ferrari (1999) presented
a one dimensional thermal stress analysis of a transversely isotropic layer that is inhomogeneous in its
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thickness. Emphasis therein was on the optimization of the effective properties of the layer in terms of the
microstructural parameters. Lekhnitskii (1981) in his monograph gave some analytical solutions for torsion
of inhomogeneous circular cylinders, and plane deformation of a hollow cylinder under extension, bending
and pressuring. The material was assumed to be orthotropic with a power variation of the elastic constants
in the radial direction. The thermal effect was not considered.

In this paper we consider the thermomechanical states in a class of FG cylinders under extension,
torsion, shearing, pressuring and temperature changes. The problem of inhomogeneous, solid or hollow
circular cylinders subjected to thermomechanical loading is formulated in a state space setting in which the
stress and the displacement are taken to be the state variables. Referred to the cylindrical coordinates
(r,0,z), the material is cylindrically anisotropic. The only material symmetry is reflectional symmetry with
respect to the cylindrical surfaces » = constant. Orthotropic, transversely isotropic and isotropic materials
are included as special cases. Cylindrical anisotropy is not uncommon in the cylindrical body. It appears in
carbon fiber (Dresselhaus et al., 1988; Christensen, 1994). The metallic forming process, such as extrusion
or drawing, may result in cylindrically anisotropic products. Natural bamboo, tree trunk, and filamentary
wound composite cylinders, in a broad sense, may be regarded as FG cylinders with cylindrically aniso-
tropic material properties. We consider herein cylindrically anisotropic FG cylinders with material prop-
erties varying continuously across the cross-section such that the conductivity and the thermal coefficients
as well as the elastic constants depend in a specific manner on r. The surfaces loads may vary circumfer-
entially but not axially so that the thermoelastic field is independent of z. The end conditions require that
the stress resultants reduce to an axial force and a torque. As such, the end effect is neglected. In addition,
the centrifugal force due to rotating of the cylinder at a constant angular velocity is considered. The state
space formalism makes it easy to determine the temperature distribution, thermoelastic deformation and
stress field. In cases the material properties follow power law dependence on r, exact solutions are obtained.
For arbitrary radially dependent material properties, the solution must be determined by numerical means.
Alternatively, the FG cylinder may be modeled as a cylinder composed of fictitious coaxial layers and use
the state space approach in conjunction with the transfer matrix for the laminated composite tubes (Tarn
and Wang, 2001a,b) in obtaining the solution.

The analysis is conducted on the basis of uncoupled thermoelasticity (Boley and Weiner, 1960) by as-
suming that the thermomechanical loading varies slowly in time and the rate of entropy vanishes. Under
this situation, the temperature field is constant in time and the thermoelastic state is stationary (Nowacki,
1975, 1986), the thermal and the mechanical problems are uncoupled. On determining the temperature field
from heat conduction equations, it is regarded as a known function and is introduced in the thermoelastic
equations to determine the thermal stresses. The first part of the paper presents the exact solutions for the
steady state temperature distributions in inhomogeneous, hollow and solid cylinder under prescribed
thermal boundary conditions. The second part presents the thermoelastic analysis of the cylinder subjected
to thermomechanical loads and the centrifugal force. Exact solutions are obtained for the deformation and
stress field in the cylinder under rotation as well as extension, torsion, shearing, pressuring and temperature
changes.

2. Heat conduction
2.1. Basic equations

We consider the steady state temperature distribution in a cylindrically anisotropic circular cylinder
under prescribed thermal boundary conditions. The material properties are assumed to be radially de-

pendent but temperature independent. Referred to the circular cylindrical coordinates (r, 0,z), the Fourier
law of heat conduction in an anisotropic solid may be expressed as (Ozisik, 1993)
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qr ki ko ks T,
Go| =—|ka ko Fkn Ty |, (1)
q- ki kn ks T.

where ¢,, qg¢, g. are the heat flux, 7" denotes the temperature distribution in the body, a comma denotes
partial differentiation with respect to the suffix variables, k;; are the conductivity coefficients for the cy-
lindrically anisotropic material, which are symmetric and limited by the requirement k;k;; — klzj >0 (no
summation on 7 and j) for i # j. If the material is orthotropic with respect to the cylindrical coordinates,
ki; = 0 for i # j. If the material is transversely isotropic with respect to z-axis, kj; = ky, in addition. When
the material is isotropic, ki; = k» = ks3. For the materials to be studied &; vary continuously in the radial
direction so that k; = k;;(r).
The heat balance equation for steady-state heat conduction without heat generation is

r ' (rq,), +r'qo0 + g:- = 0. (2)

When the body is subjected to thermal loads that are independent of z, the partial derivatives with
respect to z in Egs. (1) and (2) vanish. Formulating the problem in a state space setting by taking 7, rg, as
the primary state variables and expressing rqy, rq, in terms of them, we may cast Egs. (1) and (2) into

0 T N *klzkﬂlag *kﬁl T

r=- — 7 —1 ’ (3)
or [ 7q; k22000 —kioky Op | [ 7Gx

)-8 e
rq: —k2389 k13kﬁl rq, ’

where %,-j = ki — knk jkl‘ll, 0p and Jyy denote the first and second order partial derivatives with respect to 6.

Three kinds of thermal boundary conditions may be considered: (1) prescribed surface temperature; (2)
prescribed heat flux across the surface; (3) linear heat transfer on the surface. These conditions may be
expressed as a linear combination of the temperature and the normal heat flux (Carslaw and Jaeger, 1959).
For a solid cylinder with radius r, they can be written as

(1w ]) =0, )

where f(0) is a prescribed function of 6. The boundary conditions of the first and second kinds are obtained
by setting 4, and the heat transfer coefficient 4; = 0, respectively.
For a hollow cylinder the boundary condition on the inner surface » = r| is

(1w ]) =50, ©

where g(0) is a prescribed function.
We seek the solution to Eq. (3) in the complex form of the Fourier series

[Z] s [ 7,01 ] -

= L7 (7)

where T,(r) and §,,(r) are complex functions of r to be determined.
Substituting Eq. (7) in Egs. (3) and (4) gives

d T —il’lklzkﬁl —kﬁl T
y— ~n — r . » ~n , (8)
dr | rgq,, —n*ky —1nkiky, rq,,
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00 -7 _ ~
[M(z] _ Z —inka kioky! [ T, ]ei”o. 9)
rq: | —inkyy kiky! | L7

On expanding f'(0) and g(6) in the complex Fourier series, Egs. (5) and (6) become

(u w[2]) -

(u w[2])_ >

where

[;ﬂ :2_171/0271 {{;Egﬁ]e‘i"”da, (n=0,+1,42,...).

In order to obtain the solution of Eq. (8) that satisfies Eq. (10) for a solid cylinder, or Egs. (10) and (11)
for a hollow cylinder, the dependence of k; on r must be specified. We consider that k;; vary in proportional
to some power of r such that

ki (r) = wyr™, (12)

where k;; are given constants, m is a real number. For a solid cylinder m should be non-negative in order to
avoid k; being unbounded at » = 0. Obviously, setting m = 0 reduces to the case of a homogeneous ma-
terial.

This particular representation of the inhomogeneity make it possible to obtain exact solutions for the
FGM in which the material properties are radially dependent. More general types of gradation can be
treated using the modeling scheme to be described later.

2.2. Solution of the thermal field

With the conductivity coefficients specified by Eq. (12), Eq. (8) becomes
d T s —1 e mg—1 o
L) =R Sanlle) ®
r|rq,, N Knr KKy |1 rq,,

where ’1222 = Ky — Kfll K%z.
The solution to Eq. (13) takes the form

T,, Cll"jL
~ | = ) 14
[qu} Lzr e (14
where A, ¢;, ¢, are constants to be determined.

Substituting Eq. (14) into Eq. (13) gives a system of homogeneous algebraic equations. Non-trivial
solution exists only if determinant of the coefficient matrix equal to zero. This yields

A7+ (2ink k! +m)A A4 n(imic, — nicy) k! =0, (15)
from which 2 is found to be
(j”;) =0.5{-m =+ [m2 + 4n* (k11K — Kfz)Klﬂl/z} - iqurc[ll, (16)

where n = 0,+1,42, ..., the part in the bracket is a real number because x|k, — K3, > 0.
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It is easily seen that 1y = 0, 4o, = —m for the axisymmetric thermal field. Repeated roots 4y = 4 =0
occur only when m = 0 for the axisymmetric thermal field in a homogeneous material, which has been
treated in another publication (Tarn and Wang, 2000b). For the inhomogeneous materials under study the
roots are always distinct. The roots for n and —n are complex comjugate. When n # 0, Re(4,1) > 0,
Re(4,1 +m) >0, Re(4,n) < 0, Re(4,, +m) < 0 for m > 0, where Re(2) stands for the real part of 1. For
orthotropic material 4,; and 4,, are real because xj, = 0.

On substituting Eq. (16) into Eq. (13), there follows

T,l(r) _ ol 7/n2 C:z . (17)
l”'qvm(}") —(inKlz + K“inl)rif'“’” —(inK12 + K[l;u,,z)r;‘”2+m C;z ’
where ¢/

', and ¢/, are constants to be determined from the boundary conditions.
For a hollow cylinder Eq. (17) must satisfy Eqgs. (10) and (11). As a result, we have

(] = [otenry stimr ][], "

where (f)(i, I’) = hll";L — hz(inKlz + Klll)r”'”’l.
For a solid cylinder we must set ¢, = 0 in Eq. (17) in order that the temperature and heat flux remain
finite at » = 0. The constant ¢/, is determined by using Eq. (10) as

c:ll = A/ P(An1;72)- (19)

Note that the solution for the solid cylinder cannot be obtained from that for the hollow cylinder by
letting 7, approach to zero. This will lead to unbounded temperature and heat flux at » = 0, which of course
is untrue.

Having determined Eq. (17), we obtain the temperature distribution as

N T R D DN AV ~ for a solid cylinder,
r= Z Th(r)e” = { Yo (e 4 cl,r')e for a hollow cylinder. (20)

n=—00 n=

This concludes the solution of the steady-state heat conduction in FG cylinders. The temperature dis-
tribution will be incorporated in the subsequent thermoelastic analysis.

3. Thermoelastic analysis

3.1. State space formulation

We consider the FG cylinder of a cylindrically anisotropic material having at each point elastic symmetry
with respect to the cylindrical surfaces » = constant. The thermoelastic stress—displacement relations are

o cn cnp ez ocy O 0 Uy B

a9 cp ¢n 3 cu 0 0 rugp + uy) B,

O | _ | C13 C3 (33 C34 0 0 Uz _ ﬁ3 T (21)
oo |  |ciu cu cu ocaa O 0 up: + l”_luz,() bal|’

(o™ 0 0 0 0 Cs5 Cs6 Uz, + Uz 0

0,0 0 0 0 0 56 ceo6 F g+ up, — ruy 0

where the temperature distribution 7 = T'(r, 0) is given by Eq. (20); a,,0¢,. . .,d,¢ are the stress components;
u,, g, u. the displacement components; c;; the 13 elastic constants and f; the thermal coefficients of the
material. The thermoelastic constants are radially dependent so that c;; = ¢;;(r), f; = B;(r).
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If the material is orthotropic with respect to the cylindrical coordinates, c¢14 = ¢ay = ¢3¢ = ¢s¢ = 0, and
f, =0, the number of the independent elastic constants reduces to nine. If the material is transversely
isotropic with respect to z-axis, further reduction is obtained with c¢j; = ¢y, ¢13 = 23, Caq = C55, Co6 =
(c11 — c12)/2, and B, = B,. When the material is isotropic, we have ¢;y = ¢33 = A+ 2, cp =ci3 = 4, caq =
ces = W, and f§; = B, = f; in addition, where A and u are the Lamé constants.

When the cylinder is subjected to surface tractions that do not vary axially, the stress is independent of z.
Following Tarn and Wang (2001a,b), taking u,, ug, u. and ro,, ro,.9, ro,.. as the primary state variables, we
may cast Eq. (21) and the equilibrium equations into a system of first order differential equations as follows:

u, —C¢p dip diy o 0 0 U Brey! 0
Ug —80 1 0 0 855 S56 Uy 0 0
0| u —r0. 0 0 0 Ss¢ Ses u 0 0
Il O - A : = | T - 22
"or ro, O» dy  dg Ci2 —0p O ro, tr N_ﬁz "I R (22)
rarg —0n0y dsy dss —Cin0y —1 0 rorg Ezao )
1o, —0u0p dp des —Cudy 0 0 | |ro. B40s 0
The in-surface stresses expressed in terms of the primary state variables are
rag On 020+ 0urd. 010y + Onro. | | u, Ci EZ
ro. | = | On O0n0)+ Qsurd. 0340y + Q310 | | ug | + | Ci3 |ro, — | fy | 1T, (23)
1oy, O 020 + Quard.  Qua0y + Qxr0. | | u. Ci4 B4
where R and @ denote the body forces in the direction of r and 0, and
diy = —(¢120p + C1470z), di3 = —(C140p + ¢1370z), diy = 020p + Onr0.,
diz = 0240p + 0370., dsy = —0p(02020p + Qnr0:), ds3 = —0p(0240p + 0370.),
dsy = —99(0240p + Qurd.), ds3 = —0p(Qaa0p + O4r0.),
éijzcij/clla Qij:Cij_cliclj/Clh Eizﬁi_ﬁlcli/cllv
[Sss SS6:| _ 1 [ Ce6 _056:|
556 S66 C55C66 — 6%6 —Cs6 Css .
When surface tractions are prescribed on r = r, of a solid cylinder, the boundary condition is
[ro, 1o, ro.],_,, =[rp(0) 0 O], (24)

where p,(0) is the prescribed traction in the r direction, which may vary circumferentially. The condition
that the stresses do not vary along the z-axis does not allow for non-zero tractions in 0 and z directions for a
solid cylinder.

For a hollow cylinder the boundary conditions are

[ra, 1o roz]._, =[npi(0) nu(0) rsi(0)], (25)

[ro, 1o, 10, = [rp2(0) 112(0) 1252(0)], (26)

where pi, 11, s; and p,, 1,, s, are the tractions prescribed on the inner and outer surfaces, respectively. The
tractions in the 6 and z directions are admissible provided that they satisfy the conditions

2n 2n 2n 2n
rf/ 71(0)d0 = r%/ 7,(0)d0, rl/ s1(0)do = r2/ 52(0)do, (27)
0 0 0 0

in order to maintain static equilibrium and produce the stress independent of z.
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The end conditions require that the stress resultants over the cross-section reduce to an axial force P,, a
torque M,, and bi-axial bending moments M, M-, such that

2n )
/ / (ro,)drdf =P, (28)
0 r
2n o)
/ / (rog,)rdrdf = M, (29)
0 r|
2n %)
/ / (ro,)rsin 0drd0 = M;, (30)
0 r|
2n 123
/ / (ro.)rcos 0drd0 = M. (31)
0 |

In addition, the resultant shear forces must vanish on the ends. The conditions are satisfied identically
when the stress is independent of z.

When the stress is independent of z, the general expressions for the displacement field are (Lekhnitskii,
1981)

u, = u(r,0) — (A cos 0 + Bsin 0)/2 + uy, (32)
ug = v(r,0) +2*(Asin 0 — Bcos 0) /2 + Irz + vy, (33)
u, = w(r,0) + z(4Arcos 0 + Brsin 0 + &) + wy, (34)

where u, v, w are unknown functions of r and 0; uy, vy, wy are associated with the rigid body displacements;
the constants ¢ is a uniform extension, ¥ is the twisting angle per unit length along z-axis, 4 and B are
associated with bending of the cylinder.

On substituting Eqgs. (32) and (33) in Egs. (22) and (23) and using

sinf =i(e™ —¢€")/2,  cosO = (e +¢€)/2,

these equations become

u —C12 —C120) —C140p Cfll 0 0 u 0
v —69 1 0 0 855 S56 v 0
g w _ 0 0 0 0 S56 S66 w _ 0
or | ro, O» 0209 0240y Ci2 -0y 0 ro, R
G —000) —000p —0u0p —C¢1d —1 0 ||roy c]
rG,; —0240) —0240p —Q0uBpp —Cadp 0 0 Y0, 0
—Ci3 —C13 —C13 0 Bici)
0 0 0 0 0
20| O A2aio| 0 1 0 2| 0 0
+Dre Os3 +Dre O3 T 0O +or O *r =B L (35)
_iQ23 iQ23 0 0 5280
—1Q034 1034 0 0 B40



8196 J.-Q. Tarn | International Journal of Solids and Structures 38 (2001) 8189-8206

royg 0n 000 0u0y| | u Ci2 Ez On
ro. | = | On 050y Qudp| | v | + |é3|ro. By | T + (Dr*e” +Drie™ +er) | Os
rog; O 010 0Oudy w Ci4 B 4 Os4
On
+ 97| Ou |, (36)
Oy

where D = (4 —iB)/2, D = (A + iB) /2. Henceforth the over-bar denotes complex conjugate.
3.2. General solution

We seek the solution to Eq. (35) in the form of complex Fourier series:
[u v W ro, 1o rarz] = Z [ Un Vn VVn Xn Yn Zn ]ein07 (37)
where U,,V,,...,Z, are unknown complex functions of r.
Substituting Egs. (20) and (37) in Eq. (35) enables us to decompose the equation into sets of ordinary
differential equations that can be solved explicitly when the dependence of ¢;; and f§; on r are specified. Let
us consider the power law variation of the thermoelastic constants ¢;; and f; such that

cy(r) = agr*,  Bi(r) = ba, (38)

where a;; and b; are given constants, k is a real number. In order that the thermoelastic constants for a solid
cylinder are finite, k¥ must be non-negative. The special case of a homogeneous material is obtained by
letting £ = 0. The power law variation was often assumed in stress analysis of FG cylinders (Lekhnitskii,
1981; Horgan and Chan, 1999; Yang, 2000). It is the simplest way of representing the thermoelastic FG
cylinder that affords exact solutions.
Substituting Eqgs. (37) and (38) in Eq. (35) results in the following sets of matrix differential equations.
(1) For n =0,

d [U _ | No rNp | [ Up P 0 =1 M 0
ra [SO] a [rkNm _NOTI So e rk+1¢s() i 7“2%0 1o ’JCH'PSO - /R (39)
where Uy = [Uy W WO]T, So=[X X ZO]T. Other notations used in Eq. (39) and in the following
equations are given in Appendix A for clarity.

Eq. (39) is the governing equation for the axisymmetric deformation and stresses in the cylinder sub-
jected to thermomechanical loads that are independent of 6.

(2) For n = £1,
d U] [Ny r*Npl[uy ¢, = rp,
FE [Sl] - L’kle —N1T1 Sy D ”Hz‘/’sl 0 ”k+l‘/’s1 ’ (40)
d U_1 o N“ I"_kﬁlz U_1 —= r2$u1 ~ I"Wul
rdr [S1:| o |:rkN13 —NITI S +D rk+2$sl + T ,J(HJH ’ (41)
where

U=y n ml, Si=Xx n z],

U, =[U, v, wa", S.,=[x, v, z,]".
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Egs. (40) and (41) are complex conjugate, so are their solutions.
(3) Forn=42,£3,...,

d U N,,l Vianz U ~ }"l//
-~ n| _ ) n T un 42
rdr{sn} [ran3 NS T e, | (42)

where
U,=U ¥ wml', S,=[Xx Y. z].

Egs. (39)-(42) are of the same form except for the non-homogeneous terms. The complete solution
consists of the homogeneous solution and the particular solution. The homogeneous solution takes the

form

Un _ ﬁnr"

5] 1) ®
forn=0,+1,42,..., where u is an unknown constant and U,, S, are constant vectors to be determined.

Substituting Eq. (43) in Egs. (39)—(42) leads to an eigenvalue problem
an Nn2 fj ﬁ
. “n| — “n 44
N S -els) .

in which p is the eigenvalue and [U, S, ]T the eigenvector.
Non-trivial solution of Eq. (44) exists provided that

an - :MI Nn2
— =0 45
‘ N3 —NnTl—kI—uI‘ : (45)
from which six eigenvalues Iy; can be determined for each value of n. To each eigenvalue yu, there corre-
sponds an eigenvector [ U, Sn] .. The linear combination of the eigensolutions is again the homogeneous
solution of Egs. (39)—(42).
The particular solution for Eqgs. (40) and (41) are complex conjugate. The one for Eq. (40) takes the
form

Ul | ar 2 ayrit!
[Sl :|p o |:C27‘k+1:| T 12:1: |:b]jrilj+k+1 ’ (46)

where 4;; are given by Eq. (16), and ¢y, ¢, ay;, bi; are constants to be determined.
Substituting Eq. (46) in Eq. (40) gives us

cl 213 — Ny —Ni» - D
. B ) 47
[02} [ —Nis (k+2)I; + N1T1 ba ]’ g
[%} _ [(AU + 1)L — Ny, Ne }1 W | (48)
blj —N13 (A|j+k+ 1)13 +N11 Cl/ s1

Similarly, the particular solution of Eq. (42) is found to be

U, 2 a, iyt
[ S, ] - Z |:b j;.).n,+k+1 } ) (49)
p n

J=1
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where

[an,} [ (g + DI; — N,y —N» ] e,
K = N —T a .
b”j _Nn3 (/Lnj +k+ 1)13 + an an sn

In presenting the particular solution we did not include the remote possibility that the eigenvalue ¢ may
coincide with the values of 4,; 4 1. If it does occur, the form of the particular solution needs to be modified
by multiplying the associated terms by logr. This can be easily done.

The complete solution of Egs. (39)—(42) consists of a linear combination of Eq. (43) plus the particular
solution

- iC[gUZf,ik} s (50)

The constants of the linear combination ¢; are determined by requiring Eq. (50) satisfy the boundary
conditions. To this end, we expand the surface tractions in the complex Fourier series to reduce Eqs. (24)-
(26) to

(Sﬂ)r:rz [X Y Z ]r ry [rﬁZH 0 O]V:rz (51)
for a solid cylinder, and

(Sn)r:r1 = [X” Y” Z” ]r:rl = [rﬁln r’flﬂ rEl” ]r:rl ’ (52)

(S")r:rz [)(” Y Z ]r =r) = [rﬁZn I”’an }"3‘12,, ]r:r27 (53)

for a hollow cylinder, where n = 0,£1,+2,..., and

~ o~ o~~~ Lo —in
(P2 T S DPin Tin Sin] = P / (o2 ponosile™do. (54)
0
With Eqs. (52) and (53), the six constants c¢; in Eq. (50) are uniquely determined for a hollow cylinder. For
a solid cylinder Eq. (52) is replaced by the condition that the displacements and stresses at the center must be
finite. The condition demands that the terms with negative power of r be excluded from the solution.

The in-surface stresses are obtained by substituting Egs. (37) and (50) in Eq. (36) as

%0 - 0, n0y in0y][U, [ar b,
gz | = Z P 0y inQyy Oy || Vo | @ [ X =T By | e
G n}m éz4 i”ém in Q44 W, ay by
0> Oy
+ 4 (Dre” +Dre ™ + &) | Oy | 07| 04, |- (55)
O Ou

4. Exact solutions for axisymmetric response

When the applied load is independent of 0, the deformation and stresses in the cylinder are axisymmetric.
The thermomechanical loading that gives rise to the axisymmetric response includes internal and external
pressure, uniform surface shears, an axial force, a torque, axisymmetric body forces and the axisymmetric
temperature distribution given by
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(56)

7o 1 for a solid cylinder,
"7\ ) +chr™  for a hollow cylinder,

which is the n = 0 term of Eq. (20), where the constants ¢;, and c{, have been determined in Section 2.2.
4.1. Hollow cylinder

The governing equation (39) for the axisymmetric response may be uncoupled into

d [U, —apay! a1 U, —apapl'r 0 , o | —bray'r
_ — < P 19 . . _ / m o 11
"dr [Xo] [ #0y  apay | [ Xo +e 0,5+ + 0,2 (cor +coor™) okl |

(57)
d d
raYo:*Yo, "520:07 (58)
d _ - i, d - - i,
FEVO = Vo + (8550 + Ss6Zo)r ", FEVVO = (5560 +S66Z0)r ", (59)
in Eq. (57) the body force term has been excluded.
For axisymmetric response the tractions on » = r; and » = r, must be uniform such that
Xo0),—, =rip1, (X0),—,, = rops; (60)
(%),—,, =, (Y0),—,, = 1272 (61)
(Z0),—,, = 7151, (Z0),—,, = 1252, (62)

where py, p»; 11, T2; 51, 57 are the radial, circumferential, and axial components of the uniform tractions. For
static equilibrium it requires 7,77 = 1273 and s;71 = sy75.
The solution to Eq. (58) with the boundary conditions (61) and (62) are

Yo = tri/r = tar3 /1, Zy = s17r1 = 8772, (63)
so that
G = rlrf/rz = rzrg/rz, O = S\ /1 = $ar2 /7. (64)

The results indicate that uniform shearing produces pure shears in the hollow cylinder of an inhomo-
geneous, monoclinic cylindrically anisotropic material. Note that the stress field is independent of the
material properties.

Solving Eq. (59) with Eq. (63), we obtain

el =[5)- [t |l o

where cr is a rigid body displacement.
The displacements uy and u. are obtained by substituting Eq. (65) in Egs. (33) and (34), giving

] =[] [y ) «

where the rigid body displacements have been excluded. The term uy = ¥rz represents torsion of the cyl-
inder with the cross-section undistorted but rotating about z-axis. The term u, = &z represents warping of
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the cross-section. The displacements due to the transverse shear and longitudinal shear are coupled through
the elastic constant cs. In the cases of orthotropy, transverse isotropy, or isotropy, c¢s = 0, they are not
coupled.

The complete solution of Eq. (57) consists of the homogeneous solution and the particular solution. The
homogeneous solution takes the form

[Uo Xo]h:[ffo”“ )?07’”“‘}- (67)

Substituting Eq. (67) in the homogeneous equation of Eq. (57) yields a system of homogeneous algebraic
equations. Non-trivial solution exists if the determinant of the coefficient matrix equals to zero, from which
two distinct roots

(Z;) = 0.5{—k £ [* + 4(ax, — ka1»)a;}]"*} (68)
are obtained. Mathematically, when k> + 4(axn — kapy)a; = 0, the roots are repeated. But in view of

a2, < aya (because the strain energy density function is positive definite), it is physically impossible since
this requires k to be a complex number.
There follows

Uy ri rke c
= | ~ 69
|:X0]h |:a1r,u1+k azr;tz+k:| |:02 ’ ( )
where a; = a;p + yay, a» = app + way, ¢ and ¢; are undetermined constants of the linear combination.
The particular solution of Eq. (57) is

UO _ ar a3r2 asr a7r1’”’

|:X0 :|p - 8|:a2rk+l:| + 9 |:a4rk+2:| + |:a6rk+l:| + {agrk“”’ , (70)
where

_al T _ 1 |: aleﬂ# _ éz3 _ k _~1 :l

L@ | K(an +an) +an —an [a30p + (@ +a12) Oy |

a3 _ O 1

| 44 | k(all + 2(112) +4ay — an a1, +ap |’

[as | _ Cor {bl(kjl_alzalll)+§2:|

| %6 | k(all +a12)+a1] —an | —b,0y — (a1 + ann)bs )

[a; ] _ oo {b1(~k—|—l—m—a12alf)+§2}
ag | (k+1—=m)(1 —m)ay +kas — axn | b0,y + [(1 — m)ay; + an)b,
On combining Egs. (69) and (70), and imposing the boundary conditions (60) to determine the constants
¢, and ¢,, we obtain

M r 7 2 1—m
U, rt rie c ar asr asr arr
= |~ B - + & + 9 + + 71
G, alr,ul+k 1 azr;tka 1 ¢ azrk a4rk+1 a6rk asrk—m ) ( )
where
ro M~ +k—1  ~ jotk—17"1 _
al| _|an ar? 1 — eayrt — Yag i — agrt — agrfm
= |~ =1 ~ k-1 k +1 k k—
L €2 ] La T a? ] L p — eaars — Yaght™ — agrk — agrk™
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The in-surface stresses are given by the n = 0 term of Eq. (55) in which Eq. (71) is substituted,

09 P2 () s (et o U ﬁz 1 A2 /o
a. | = |y ()t [02] +eln; [P+ 3 A A |+ A3 e
0¢: Yol )y ()t Ny Un a4 Aa
(72)
where 7,(u) = ay; + pay;, j =2, 3, 4;
[, | [ On an | a Qz3 ﬁz On ap | r a O
M| = |9y ai [az} L E%E N3 | = | Oy ai 04} T Qu |
L4 | L Oy a1 Oy N4 Oy @l Ou
(2] [Qn @] 4 by o 0y an] 4 by
1 _ ~ 5 / 5 _ ~ 7 /
43 = | 0y di [a } —Co | b3 |> 43| = | O dais [a ] —Co | b3
) =5 6 > =5 7 8
L 44 L Oy a4 by A4 Oy dia by

When the cylinder is under plane deformation and isothermal condition as in Lekhnitskii (1981), the
constants ¢ = ¥ = ¢{; = ¢, = 0 so that a; = a;, = a3 = a4 = 0. For an orthotropic material, the constants
aiy = Oy = Q34 = by = 0in addition. With these reductions, the stress has been checked to agree with that
given by Lekhnitskii for the inhomogeneous cylinder under internal and external pressure. In his mono-
graph Lekhnitskii did not present the solution for the displacement or explicit expressions for the stress in
the cylinder under torsion and extension.

It should be noted that the plane deformation is not possible without applying adequate axial force and
torque at the ends. The axisymmetric deformation and stresses involves ¢ and ¥, but not 4 and B. In
general, ¢ and ¥ cannot be set to zero in advance—the expressions for ¢ = ¢(p, P,, M,), ¥ = J(p, P, M;) must
be determined through Egs. (28) and (29) by requiring that the stress resultants at the ends reduce to an
axial force and a torque. The end conditions (30) and (31) are satisfied identically for axisymmetric re-
sponses. In order that the cylinder is in the plane deformation state (such that ¢ = ¥ = 0), appropriate axial
force and torque must be applied at the ends.

The foregoing solution is valid for the inhomogeneous, cylindrically anisotropic hollow cylinder sub-
jected to radial temperature changes, uniform surface tractions, an axial force and a torque. On specifying
M, = py = p, = 0 for extension by an axial force, P, = p; = p, = 0 for torsion by a torque, and M, = P, =0
for radial expansion or contraction by internal and external pressure, there follows the solutions for various
loading cases.

It is clear by now that extension, torsion, and radial expansion or contraction of a cylindrically an-
isotropic cylinder interact. When the cylindrically anisotropic cylinder is subjected to an axial force, it
exhibits not only axial extension and radial deformation but also warping and twisting. When subjected to
a torque, it exhibits axial extension, radial deformation as well as warping and twisting of the cross-section.
When subjected to internal, external pressure and a radially temperature change, the cross-section warps
and twists as well. Coupling of extension and torsion does not occur in the inhomogeneous cylinder of
orthotropic, transversely isotropic or isotropic materials.

When setting £ = m = 0, the solution reduces to that of a homogeneous cylinder. It can be shown that
when a homogeneous, cylindrically anisotropic cylinder is subjected to internal and external pressure and a
radial temperature change, the maximum hoop stress a4 occurs at the inner surface if ¢, < ¢y, as in the case
for the homogeneous isotropic material. This is not true if ¢,; > ¢;;—the location of the maximum hoop
stress depends on the ratio of the inner and outer radii, the applied pressure as well as the material
properties. A similar behavior was observed by Horgan and Baxter (1996) in the case of a homogeneous,
cylindrically orthotropic material under isothermal condition. The situation is more complicated in case the
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material is inhomogeneous as the parameters k and m enter the picture. The maximum radial and hoop

stresses in general do not occur at the inner surface of a FG cylinder.

4.2. Solid cylinder

The solutions of Egs. (58) and (59) that satisfies Eq. (24) are trivial ones, giving 6,9 = ¢,, = 0, and v = cr,
w = 0 which represent rigid body displacements as expected. The circumferential and axial displacements in
the solid cylinder under axisymmetric thermomechanical loading are simply

uy = vrz, u, = éz. (73)

The radial displacement and stress are determined by solving Eq. (57) with ¢, = 0, yielding

u, i i c arr azr? asr
[@l = |:’C‘Z'1r,u.1+kl dpprathl ] [cj +e |:a21rk:| + |:a4;,k+1 } + [a;rk} ) (74)
where y; and u, are given by Eq. (68), ¢; and ¢, are constants to be determined.

The solution of a solid cylinder cannot be obtained from that of the hollow cylinder by letting r; — 0.
For a solid cylinder the displacements and stresses must remain finite at » = 0. It follows that the terms with
negative power of r should be excluded from the solution. Examining Eq. (68), we find that Re(y,) and
Re(u, + &k — 1) are always negative for k£ > 0. Hence we must set ¢; = 0. On determining ¢; from the
boundary condition (a,),_,, = p», the radial displacement and stress are found to be

u- | ri ar asr? asr
o =alam ] el i ol o) g

where ¢; = (p; — sarr§ — dagrs — agrh) /(@Y.
The in-surface stresses are

g0 72(1) Up) 1, o
o | = | ps(w) [P e g [ A0 T | A 4] s | (76)
00z 74(1y) My N A4

where the notations are the same as defined in Eq. (72). The constants ¢ and ¥} are determined through Eqs.
(28) and (29).

As in a hollow cylinder, extension, torsion and radial expansion or contraction interact. In Egs. (75) and
(76) the terms of #¥ and #*! are the stress due to the combined action of a radial temperature change, an
axial force and a torque, they are always finite for k = 0. The terms of #* and r*1**~! are the stress due to
external pressure, they are finite when y; + k& — 1 > 0. A peculiar situation arises when y; + k£ — 1 < 0; the
stress is singular at r = 0. Such abnormality does not occur in a homogeneous isotropic cylinder. As is well
known, when a homogeneous, isotropic solid cylinder is subjected to external pressure p, the stress field is
uniform with the radial and hoop stresses equal to p everywhere; whereas in the cylinder with a pin hole the
maximum hoop stress occurs at the center and has the value of 2p. For an inhomogeneous, cylindrically
anisotropic cylinder it can be shown that u; +k — 1 > 0if k > (1 — ana;}')/(1 — ana;)!). This condition is
always satisfied in the case of an inhomogeneous isotropic cylinder since ay» = a;; > aj; and k > 0. Thus,
no stress singularities arise in an inhomogeneous isotropic cylinder. When the material is cylindrically
anisotropic, the condition is not always satisfied by the elastic constants. Stress singularities do not arise
when ay/a;; = 1, but when ax/a;; < 1, the external pressure gives rise to stress singularities at » = 0 for
certain FG cylinders in which k& < (1 — axna;!)/(1 — apay)l).
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5. Exact solutions for rotating cylinders

When the cylinder is rotating at a constant angular velocity o about the z-axis, the centrifugal force
constitutes a body force R = prw? in the radial direction, where p = p(r) is the radially dependent mass
density of the material.

Insertion of R in Eq. (39) gives

d {Uo] —anay  rtapf
F— = ~
dr | Xo *0y  anay!

Uo} —apaplr [ 0 ] | =biajlr
+e| ~ +9| ~ —(cp +cpr™)| ~
{XO [ Oy 0" (o ™) byt

o]

for a hollow cylinder. The other equations are the same as Eqgs. (58) and (59). It is easily shown that the
solutions of Egs. (58) and (59) along with the traction-free boundary conditions are trivial ones, resulting in
6,9 = 0, = v = w = 0. Thus, the circumferential and axial displacements in the rotating cylinder are simply

ug = Vrz, u, = ez. (78)

The homogeneous solution of Eq. (77) is the same as Eq. (69). In addition to the particular solution (70),
the one due to the centrifugal force can be obtained for a specific variation of the mass density. Suppose
p(r) = por', where p, is a given positive constant, # is a real number. The additional particular solution is

Uo]l  [mipeer+2t
[XOL - { P’ | (79)

where w; = a;' /4, vo = (N +2 —k +ana;)/4, A = (an — kap)ay! — (n+2)(n+2 — k).
It follows from the complete solution of Eq. (77) that

u | i rh c ar asr? asr art" %y P2k
|:O-r:| - |:21’1r/41+k1 Gyrhathl ] [02] +e |:a2’,.k:| + 9 l:a4rk+1 + agr + agrtm + Yo Pt |
(80)

where ¢; and ¢, are undetermined constants.
For a hollow cylinder the boundary conditions are

@), =0, (a),, =0 (81)

Imposing Eq. (81) on Eq. (80) yields

r r~ -1 ~ p—17"1 +1—k _
al _ |ar ary? A2 Po@*r] + eay + Jagr + ag + agr;" (82)
~ el =~ -l 1=k P
| 2 L ary ary 2P T + gay + Yagry + ag + agry™
The in-surface stresses are
g0 P2 () g () el UE) . 1, 1 A2
o. | = | ps(u)rt =t py(uy)retr! o | TE[m || s A VP P
_ _ 2 ~
L 00z RO A (7 T My un s
pa 2
N P A (83)
},4 U4

where %; = ¥, QZ ;% jal‘ll, the other notations are the same as defined in Eq. (72). The constants ¢ and 4
are determined through Egs. (28) and (29) with P, = M, = 0.
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For a solid cylinder the displacements and stresses must remain finite at » = 0. Hence we must set ¢; = 0
in order to exclude the terms with negative power of r from the solution. On determining ¢; using the
boundary condition (o,),_,, = 0, we obtain

r=

2 2
L0 N S I L I LT (84)
a, aritk=l ar* Hopo’rth |
Hy+k—1

~_ 1
where ¢; = —a;! (nap@*r) " + ayrk)rh
The in-surface stresses for a solid cylinder are

] 72(11) Up) M, A2 %o
o. | =c | p3(y) [P e s |0 s | AT | A [ pp? | ws | T (85)
00z Va(t) N4 n A4 %y

in which the constants ¢ and 1} are determined through Egs. (28) and (29) with P, = M, = 0.

The solution indicates that torsion and warping as well as extension and radial expansion occur in the
rotating cylinder of a cylindrically anisotropic material. In the case of orthotropy, transverse isotropy or
isotropy, torsion and warping do not occur.

It can be shown that the maximum radial and hoop stresses generally do not occur at the inner surface of
an inhomogeneous hollow cylinder, or at the center of an inhomogeneous solid cylinder, in contrast to the
homogeneous isotropic material. Similar conclusion has been reached by Horgan and Chan (1999) for an
inhomogeneous isotropic rotating cylinder. The location of the maximum radial and hoop stress depends
on the radius, the rotating speed, the mass density distribution as well as the material properties of the
cylinder. The shear stress g4, is non-zero in a cylindrically anisotropic rotating cylinder. It vanishes in the
case of orthotropy, transverse isotropy or isotropy.

6. Closure

The foregoing analysis provides a systematic approach in the state space setting for FG anisotropic
cylinders subjected to thermomechanical loading. The general solution is expressed in a matrix form. Exact
solutions have been obtained for power law variations of the thermoelastic constants of the cylinder under
extension, torsion, shearing, pressuring and temperature changes.

Considerations of several issues worthy further study are in order. The power law dependence of the
moduli on position may not be realistic. The inhomogeneity in the FGM are usually resulted from
the relative concentrations of the constituent materials. The elastic constants of a FGM are not neces-
sarily independent as those of a homogeneous material. This restricts the property variation of a FGM. As
such, the dependence of the elastic moduli on the position may not be independently assumed. In this
regard, it is essential to evaluate the effective properties of the FGM in terms of the properties, volume
fraction and spatial distribution of its constituents to establish the limitations on the FGM property
variation.

In case the material properties of a FG cylinder are radially dependent but do not vary according to a
power law distribution, one encounters in the analysis a system of differential equations with variable
coefficients which is not easy to deal with analytically. An exact solution is out of the question. One must
turn to numerical solution. An advantage of working in the state space framework is that the state equation
is a standard linear system of first-order ordinary differential equations in numerical analysis. Yet it is not
readily solvable numerically because one faces here a two point boundary value problem that requires
considerably more effort to solve than does an initial value problem (Press et al., 1992). There are no known
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algorithms which a priori guarantee successful numerical solution of a two point boundary value problem.
The Frobenius method of power series may be employed, but the solution is tedious and convergence of the
power series solution is difficult to assess. An alternative way of dealing with a general type of radially
dependent FGM is to model the inhomogeneous cylinder by a coaxial multilayered cylinder composed of
fictitious layers of different materials. Then the problem can be treated by the state space approach in
conjunction with the transfer matrix (Tarn and Wang, 2001a,b). The approach is effective in thermoelastic
analysis of multilayered anisotropic cylinders. It requires only systematic matrix operation without recourse
to a layerwise treatment. In essence, the modeling is to approximate mathematically the continuously
varying properties of the FGM by piecewise constant functions. The accuracy of the approximation nat-
urally depends on the number of fictitious layers taken, but whether the number is large or small is not a
major problem.

When the cylinder is subjected to bending moments at the ends, the deformation and stress can be
derived from the n = £1 terms in the complex Fourier series (37). The governing equations (40) and (41)
have to be solved along with the traction-free surface boundary conditions and the end conditions that
require that the stress resultants over the cross-section reduce to the prescribed bending moments. To
obtain the exact solution for the bending problem it is necessary to determine the six roots of Eq. (45) in
closed forms. This is easily done numerically but rather difficult analytically. In this circumstance, it is
expedient to determine the roots numerically and then carry on the analysis.

The present solutions have been obtained on the basis of stationary problems of thermoelasticity. The
approach can be extended to transient thermal stress analysis and more general problems of coupled
thermoelasticity. Relevant studies are currently underway.
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Appendix A
The notations used in Egs. (39)—(42) are defined by
o~ ~ T ~ T
$o=1[-a 0 0]',  do=[0y 0 0], @9=[0y 0 0],

Vo=[bal 0 0],  yo=[-b 0 0], R=[R © 0],

Sss Ss 1 Aee —dase 2
~ ~ = — , A — _ ,
[556 SsJ A4 [—056 ass } Assties — s
aij = aija1_|17 Z; =b;— blali; é[j = a; — alialja
G 00 al 00 0, 0 0
No1 = 0 1L 0f, Noo=1| 0 5§55 S5 |, Nos=1] 0 0 0f,
0 0 0 0  Ss6 Ses 0 0 O

b = D, Vi =Y., g = [@23 —i@23 4@34?7

'//sl = [_52 152 i,l;4:|T7 N12 == Noz,
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~ap  —iap —iay . 0n 10y 0y
Niyp=| —i 1 0 J Niz =Nj; = —igzz sz Qz4 )
0 0 0 —iQ24 Q24 Q44

=~ .7 .~ T
l/’un = l/Ian l/’sn = [_bz li’lb2 li’lb4] B an = 1\1027
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